Background: Increased expression of the complement component 4A (C4A) gene is associated with a greater lifetime risk of schizophrenia. In the brain, C4A is involved in synaptic pruning; yet, it remains unclear the extent to which upregulation of C4A alters brain development or is associated with the risk for psychotic symptoms in childhood. Here, we perform a multi-ancestry phenome-wide association study in 7789 children aged 9-12 years to examine the relationship between genetically regulated expression (GREx) of C4A, childhood brain structure, cognition, and psychiatric symptoms.
Results: While C4A GREx is not related to childhood psychotic experiences, cognition, or global measures of brain structure, it is associated with a localized reduction in regional surface area (SA) of the entorhinal cortex. Furthermore, we show that reduced entorhinal cortex SA at 9-10 years predicts a greater number and severity of psychosis-like events at 1-year and 2-year follow-up time points. We also demonstrate that the effects of C4A on the entorhinal cortex are independent of genome-wide polygenic risk for schizophrenia.
Conclusions: Our results suggest neurodevelopmental effects of C4A on childhood medial temporal lobe structure, which may serve as a biomarker for schizophrenia risk prior to symptom onset.
Keywords: Brain; Complement; Gene expression; Genetics; Neuroimaging; Psychosis; Schizophrenia.
© 2023. The Author(s).