Toward Narrowband and Efficient Blue Fluophosphors by Locking the Stretching Vibration of Indolocarbazole Skeletons

ACS Appl Mater Interfaces. 2023 Mar 8. doi: 10.1021/acsami.2c23278. Online ahead of print.

Abstract

Developing efficient and color-saturated deep-blue emitting molecules with small Commission Internationale de L'Eclairage (CIE) y values is challenging and has great potential for wide-color gamut displays. Herein, we introduce an intramolecular locking strategy to restrain molecular stretching vibrations of the emission spectral broadening. By cyclizing rigid fluorenes and connecting electron-donating groups to the indolo[3,2,1-jk]-indolo[1',2',3':1,7]indolo[2,3-b]carbazole (DIDCz) framework, the in-plane swing of peripheral bonds and stretching vibrations of the indolocarbazole skeleton are restricted due to an increased steric hindrance from cyclized groups and diphenylamine auxochromophores. As a result, reorganization energies at the high-frequency region (1300-1800 cm-1) are reduced, realizing pure blue emission with a small full-width-at-half-maximum (FWHM) of 30 nm by suppressing shoulder peaks of polycyclic aromatic hydrocarbon (PAH) frameworks. The fabricated bottom-emitting organic light-emitting diode (OLED) exhibits an efficient external quantum efficiency (EQE) of 7.34% and deep-blue coordinates of (0.140, 0.105) at a high brightness of 1000 cd/m2. The FWHM of the electroluminescent spectrum is only 32 nm, which is one of the narrowest electroluminescent emissions among the reported intramolecular charge transfer fluophosphors. Our current findings provide a new molecular design strategy to conceive efficient and narrowband emitters with small reorganization energies.

Keywords: blue fluophosphors; indolocarbazole; intramolecular locking strategy; organic light-emitting diodes; reorganization energy; stretching vibration.