In this work, we demonstrate how important it is to investigate not only on-target activity but to keep antibiotic activity against critical pathogens in mind. Since antimicrobial resistance is spreading in bacteria such as Mycobacterium tuberculosis, investigations into new targets are urgently needed. One promising new target is 1-deoxy-d-xylulose 5-phosphate synthase (DXPS) of the 2-C-methyl-d-erythritol 4-phosphate (MEP) pathway. We have recently solved the crystal structure of truncated M. tuberculosis DXPS and used it to perform a virtual screening in collaboration with Atomwise Inc. using their deep convolutional neural network-based AtomNet® platform. Of 94 virtual hit compounds only one showed interesting results in binding and activity studies. We synthesized 30 close derivatives using a straightforward synthetic route that allowed for easy derivatization. However, no improvement in activity was observed for any of the derivatives. Therefore, we tested them against a variety of pathogens and found them to be good inhibitors against Escherichia coli.
Keywords: 1-deoxy-d-xylulose 5-phosphate synthase; 2-C-methyl-d-erythritol 4-phosphate pathway; Drug discovery; inhibitors; neural networks.
© 2023 The Authors. ChemMedChem published by Wiley-VCH GmbH.