The use of citrate, through reversible binding of calcium, has become the preferred choice for anticoagulation in continuous renal replacement therapy in the critically ill patient. Though generally considered as very efficacious in acute kidney injury, this type of anticoagulation can cause acid-base disorders as well as citrate accumulation and overload, phenomena which have been well described. The purpose of this narrative review is to provide an overview of some other, non-anticoagulation effects of citrate chelation during its use as anticoagulant. We highlight the effects seen on the calcium balance and hormonal status, phosphate and magnesium balance, as well as oxidative stress resulting from these unapparent effects. As most of these data on these non-anticoagulation effects have been obtained in small observational studies, new and larger studies documenting both short- and long-term effects should be undertaken. Subsequent future guidelines for citrate-based continuous renal replacement therapy should take not only the metabolic but also these unapparent effects into account.
Keywords: Calcium balance; Citrate anticoagulation; Hormones; Magnesium; Phosphate; Review.
© 2023. The Author(s).