Enhanced Photoluminescence of Crystalline Alq3 Micro-Rods Hybridized with Silver Nanowires

Nanomaterials (Basel). 2023 Feb 23;13(5):825. doi: 10.3390/nano13050825.

Abstract

An enhancement of the local electric field at the metal/dielectric interface of hybrid materials due to the localized surface plasmon resonance (LSPR) phenomenon plays a particularly important role in versatile research fields resulting in a distinct modification of the electrical, as well as optical, properties of the hybrid material. In this paper, we succeeded in visually confirming the LSPR phenomenon in the crystalline tris(8-hydroxyquinoline) aluminum (Alq3) micro-rod (MR) hybridized with silver (Ag) nanowire (NW) in the form of photoluminescence (PL) characteristics. Crystalline Alq3 MRs were prepared by a self-assembly method under the mixed solution of protic and aprotic polar solvents, which could be easily applied to fabricate hybrid Alq3/Ag structures. The hybridization between the crystalline Alq3 MRs and Ag NWs was confirmed by the component analysis of the selected area electronic diffraction attached to high-resolution transmission electron microscope. Nanoscale and solid state PL experiments on the hybrid Alq3/Ag structures using a lab-made laser confocal microscope exhibited a distinct enhancement of the PL intensity (approximately 26-fold), which also supported the LSPR effects between crystalline Alq3 MRs and Ag NWs.

Keywords: Ag; Alq3; crystalline micro-rod; hybridization; nanowire; surface plasmon resonance.

Grants and funding

This work was supported by INHA UNIVERSITY Research Grant.