Inflammation is an indispensable part of the human body's self-defense mechanism against external stimuli. The interactions between Toll-like receptors and microbial components trigger the innate immune system via NF-κB signaling, which regulates the overall cell signaling including inflammatory responses and immune modulations. The anti-inflammatory effects of Hyptis obtusiflora C. Presl ex Benth, which has been used as a home remedy for gastrointestinal disorders and skin disease in rural areas of Latin America, have not yet been studied. Here, we investigate the medicinal properties of Hyptis obtusiflora C. Presl ex Benth methanol extract (Ho-ME) for inflammatory response suppression. Nitric oxide secretion in RAW264.7 cells triggered by TLR2, 3, or 4 agonists was reduced by Ho-ME. Reduction of inducible nitric oxide synthase (iNOS), cyclooxygenase (COX)-2, and interleukin (IL)-1b mRNA expression was observed. Decreased transcriptional activity in TRIF- and MyD88-overexpressing HEK293T cells was detected with a luciferase assay. Additionally, serially downregulated phosphorylation of kinase in the NF-κB pathway by Ho-ME was discovered in lipopolysaccharide-treated RAW264.7 cells. Together with the overexpression of its constructs, AKT was identified as a target protein of Ho-ME, and its binding domains were reaffirmed. Moreover, Ho-ME exerted gastroprotective effects in an acute gastritis mouse model generated by the administration of HCl and EtOH. In conclusion, Ho-ME downregulates inflammation via AKT targeting in the NF-κB pathway, and the combined results support Hyptis obtusiflora as a new candidate anti-inflammatory drug.
Keywords: AKT; Hyptis obtusiflora C. Presl ex Benth; TLR4; anti-inflammation.