Broad-bandgap semiconductor-based solar-blind ultraviolet (SBUV) photodetectors have attracted considerable research interest because of their broad applications in missile plume tracking, flame detectors, environmental monitoring, and optical communications due to their solar-blind nature and high sensitivity with low background radiation. Owing to its high light absorption coefficient, abundance, and wide tunable bandgap of 2-2.6 eV, tin disulfide (SnS2) has emerged as one of the most promising compounds for application in UV-visible optoelectronic devices. However, SnS2 UV detectors have some undesirable properties such as slow response speed, high current noise level, and low specific detectivity. This study reports a metal mirror-enhanced Ta0.01W0.99Se2/SnS2 (TWS) van der Waals heterodiode-based SBUV photodetector with an ultrahigh photoresponsivity (R) of ∼1.85 × 104 AW-1 and a fast speed with rising time (τr) of 3.3 μs and decay time (τd) of 3.4 μs. Notably, the TWS heterodiode device exhibits a significantly low noise equivalent power of ∼1.02 × 10-18 W Hz-1/2 and a high specific detectivity of ∼3.65 × 1014 cm Hz1/2 W-1. This study provides an alternative method for designing fast-speed SBUV photodetectors with enormous potential in applications.
Keywords: 2D materials; heterodiode; photodetector; solar-blind ultraviolet; tin disulfide; van der Waals.