Microplastic (MP) pollution has become an escalating problem in Bangladesh due to its rapid urbanization, economic growth, and excessive use of plastics; however, data on MP pollution from fresh water resources in this country are limited. This study investigated microplastics pollution in riverbed sediments in the peripheral rivers of Dhaka, the capital of Bangladesh. Twenty-eight sediment samples were collected from the selected stations of the Buriganga, Turag, and Balu Rivers. Density separation and wet-peroxidation methods were employed to extract MP particles. Attenuated total reflectance-Fourier transform infrared spectroscopy was used to identify the polymers. The results indicated a medium-level abundance of MPs in riverbed sediment in comparison with the findings of other studies in freshwater sediments worldwide. Film shape, white and transparent color, and large-size (1-5 mm) MPs were dominant in the riverbed sediment. The most abundant polymers were polyethylene (PE), polypropylene (PP), and polyethylene terephthalate (PET). Pollution load index (PLI) values greater than 1 were observed, indicating that all sampling sites were polluted with MPs. An assessment of ecological risks, using the abundance, polymer types, and toxicity of MPs in the sediment samples, suggested a medium to very high ecological risk of MP pollution of the rivers. The increased abundance of MPs and the presence of highly hazardous polymers, namely; polyurethane, acrylonitrile butadiene styrene, polyvinyl chloride, epoxy resin, and polyphenylene sulfide, were associated with higher ecological risks. Scanning electron microscopy (SEM) analysis indicated that the MPs were subjected to weathering actions, reducing the size of MPs, which caused additional potential ecological hazards in these river ecosystems. This investigation provides baseline information on MP pollution in riverine freshwater ecosystems for further in-depth studies of risk assessment and developing strategies for controlling MP pollution in Bangladesh.
Keywords: Dhaka city; Ecological risks; Microplastics; Riverbed sediment; Weathering.
Copyright © 2023 Elsevier B.V. All rights reserved.