The optical emission of plasma on industrial steel samples induced by Laser Ablation-Spark Discharge-Optical Emission Spectroscopy (LA-SD-OES) and by Laser-Induced Breakdown Spectroscopy (LIBS) is investigated and correlated to the volume of ablated steel material. The 36 steel samples investigated have an iron content C(Fe) above 94 wt%. The excitation energy in LIBS (laser pulse of 55 mJ) and in LA-SD-OES (laser pulse of 5 mJ and spark discharge of 50 mJ) is the same. In LA-SD-OES, the optical emission of plasma and the size of ablation craters are very similar for all samples and a linear calibration curve for Mn is measured (R2 = 0.99). In LIBS, however, a pronounced dependence of the plasma emission and of the crater volume on the steel matrix is observed and calibration curves show a strong cross-sensitivity to other elements such as Si (matrix effect). The hardness, grain size, and phase of steel samples are analyzed to correlate the matrix effect in LIBS measurements to a physical property of the specimen. The different behavior for LA-SD-OES and LIBS is probably due to different processes of sampling and plasma excitation. From our results we conclude that LA-SD-OES enables for the element analysis of industrial steel largely independent of composition and structure of samples while in LIBS the matrix effect has to be taken into account.
Keywords: Calibration curves; Laser ablation-spark discharge-optical emission spectroscopy (LA-SD-OES); Laser-induced breakdown spectroscopy (LIBS); Matrix effect; Spark optical emission spectroscopy; Steel.
Copyright © 2023 The Authors. Published by Elsevier B.V. All rights reserved.