Purpose: TSPO PET with radioligand [18F]DPA-714 is an emerging molecular imaging technique that reflects cerebral inflammation and microglial activation, and it has been recently used in central nervous system diseases. In this study, we aimed to investigate the neuroinflammation pattern of anti-leucine-rich glioma-inactivated 1 (LGI1) protein autoimmune encephalitis (AIE) and to evaluate its possible correlation with clinical phenotypes.
Methods: Twenty patients with anti-LGI1 encephalitis from the autoimmune encephalitis cohort in Huashan Hospital and ten with other AIE and non-inflammatory diseases that underwent TSPO PET imaging were included in the current study. Increased regional [18F]DPA-714 retention in anti-LGI1 encephalitis was detected on a voxel basis using statistic parametric mapping analysis. Multiple correspondence analysis and hierarchical clustering were conducted for discriminate subgroups in anti-LGI1 encephalitis. Standardized uptake value ratios normalized to the cerebellum (SUVRc) were calculated for semiquantitative analysis of TSPO PET features between different LGI1-AIE subgroups.
Results: Increased regional retention of [18F]DPA-714 was identified in the bilateral hippocampus, caudate nucleus, and frontal cortex in LGI1-AIE patients. Two subgroups of LGI1-AIE patients were distinguished based on the top seven common symptoms. Patients in cluster 1 had a high frequency of facio-brachial dystonic seizures than those in cluster 2 (p = 0.004), whereas patients in cluster 2 had a higher frequency of general tonic-clonic (GTC) seizures than those in cluster 1 (p < 0.001). Supplementary motor area and superior frontal gyrus showed higher [18F]DPA-714 retention in cluster 2 patients compared with those in cluster 1 (p = 0.024; p = 0.04, respectively).
Conclusions: Anti-LGI1 encephalitis had a distinctive molecular imaging pattern presented by TSPO PET scan. LGI1-AIE patients with higher retention of [18F]DPA-714 in the frontal cortex were more prone to present with GTC seizures. Further studies are required for verifying its value in clinical application.
Keywords: Anti-LGI1 encephalitis; Microglial activation; Molecular imaging; Phenotype clustering; [18F]DPA-714.
© 2023. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.