NbOx-based Mott memristors exhibit fast threshold switching behaviors, making them suitable for spike generators in neuromorphic computing and stochastic clock generators in security devices. In these applications, a high output spike amplitude is necessary for threshold level control and accurate signal detection. Here, we propose a materialwise solution to obtain the high amplitude spikes by inserting Au nanodots into the NbOx device. The Au nanodots enable increasing the threshold voltage by modulating the oxygen contents at the electrode-oxide interface, providing a higher ON current compared to nanodot-free NbOx devices. Also, the reduction of the local switching region volume decreases the thermal capacitance of the system, allowing the maximum spike amplitude generation. Consequently, the Au nanodot incorporation increases the spike amplitude of the NbOx device by 6 times, without any additional external circuit elements. The results are systematically supported by both a numerical model and a finite-element-method-based multiphysics model.
Keywords: Mott memristor; Niobium oxide; Oscillation; Spiking amplitude; TS oscillator; Threshold switching.