Emerging evidence has indicated that peroxisome proliferator-activated receptor-gamma coactivator-1α (PPARGC1A) is involved in hepatocellular carcinoma (HCC). However, its detailed function and up- and downstream mechanisms are incompletely understood. In this study, we confirmed that PPAGC1A is lowly expressed in HCC and is associated with poor prognosis using large-scale public datasets and in-house cohorts. PPAGC1A was found to impair the progression and sensitivity of HCC to lenvatinib. Mechanistically, PPAGC1A repressed bone morphogenetic protein and activin membrane-bound inhibitor (BAMBI) by inhibiting WNT/β-catenin signaling. BAMBI mediated the function of PPARGC1A and regulated ACSL5 through TGF-β/SMAD signaling. PPARGC1A/BAMBI regulated ROS production and ferroptosis-related cell death by controlling ACSL5. PPARGC1A/BAMBI/ACSL5 axis was hypoxia-responsive. METTL3 and WTAP silenced PPARGC1A in an m6A-YTHDF2-dependent way under normoxia and hypoxia, respectively. Metformin restored PPARGC1A expression by reducing its m6A modification via inhibiting METTL3. In animal models and patient-derived organoids, consistent functional data of PPARGC1A/BAMBI/ACSL5 were observed. Conclusions: These findings provide new insights into the role of the aberrant PPARGC1A/BAMBI/ACSL5 axis in HCC. And the mechanism of PPARGC1A dysregulation was explained by m6A modification. Metformin may benefit HCC patients with PPARGC1A dysregulation.
© 2023. The Author(s), under exclusive licence to Springer Nature Limited.