Trigeminal neuralgia (TN) is a complex orofacial neuropathic pain. The crippling condition's underlying mechanism is still not completely understood. The main cause of lightning-like pain in patients with TN may be chronic inflammation that causes nerve demyelination. Nano-silicon (Si) can safely and continuously produce hydrogen in the alkaline environment of the intestine to exert systemic anti-inflammatory effects. Hydrogen has a promising anti-neuroinflammatory impact. The study aimed to determine how intra-intestinal application of a hydrogen-producing Si-based agent affected the demyelination of the trigeminal ganglion in TN rats. We discovered that increased expression of the NLRP3 inflammasome and inflammatory cell infiltration occurred concurrently with demyelination of the trigeminal ganglion in TN rats. We could determine that the neural effect of the hydrogen-producing Si-based agent was connected to the inhibition of microglial pyroptosis by using transmission electron microscopy. The results demonstrated that the Si-based agent reduced the infiltration of inflammatory cells and the degree of neural demyelination. In a subsequent study, it was discovered that hydrogen produced by a Si-based agent regulates the pyroptosis of microglia may through the NLRP3-caspase-1-GSDMD pathway, preventing the development of chronic neuroinflammation and consequently lowering the incidence of nerve demyelination. This study offers a novel strategy for elucidating the pathogenesis of TN and developing potential therapeutic drugs.
Keywords: Demyelination; Hydrogen; Microglia; NLRP3 Inflammasome; Pyroptosis; Trigeminal neuralgia.
Copyright © 2023 Elsevier B.V. All rights reserved.