Oral and intestinal dysbiosis in Parkinson's disease

Rev Neurol (Paris). 2023 Nov;179(9):937-946. doi: 10.1016/j.neurol.2022.12.010. Epub 2023 Mar 16.

Abstract

The suspicion of an origin of Parkinson's disease (PD) at the periphery of the body and the involvement of environmental risk factors in the pathogenesis of PD have directed the attention of the scientific community towards the microbiota. The microbiota represents all the microorganisms residing both in and on a host. It plays an essential role in the physiological functioning of the host. In this article, we review the dysbiosis repeatedly demonstrated in PD and how it influences PD symptoms. Dysbiosis is associated with both motor and non-motor PD symptoms. In animal models, dysbiosis only promotes symptoms in individuals genetically susceptible to Parkinson's disease, suggesting that dysbiosis is a risk factor but not a cause of Parkinson's disease. We also review how dysbiosis contributes to the pathophysiology of PD. Dysbiosis induces numerous and complex metabolic changes, resulting in increased intestinal permeability, local and systemic inflammation, production of bacterial amyloid proteins that promote α-synuclein aggregation, as well as a decrease in short-chain fatty acid-producing bacteria that have anti-inflammatory and neuroprotective potential. In addition, we review how dysbiosis decreases the efficacy of dopaminergic treatments. We then discuss the interest of dysbiosis analysis as a biomarker of Parkinson's disease. Finally, we give an overview of how interventions modulating the gut microbiota such as dietary interventions, pro-biotics, intestinal decontamination and fecal microbiota transplantation could influence the course of PD.

Keywords: Dopamine replacement therapy; Gut microbiota; Oral microbiome; Parkinson's disease; Pathogenesis; Symptoms.

Publication types

  • Review

MeSH terms

  • Animals
  • Dysbiosis / complications
  • Dysbiosis / metabolism
  • Gastrointestinal Microbiome* / physiology
  • Humans
  • Inflammation / complications
  • Microbiota*
  • Parkinson Disease* / complications
  • Parkinson Disease* / metabolism
  • Parkinson Disease* / therapy