Gait Variability Structure Linked to Worse Cartilage Composition Post-ACL Reconstruction

Med Sci Sports Exerc. 2023 Aug 1;55(8):1499-1506. doi: 10.1249/MSS.0000000000003174. Epub 2023 Mar 21.

Abstract

Introduction: Aberrant gait variability has been observed after anterior cruciate ligament reconstruction (ACLR), yet it remains unknown if gait variability is associated with early changes in cartilage composition linked to osteoarthritis development. Our purpose was to determine the association between femoral articular cartilage T1ρ magnetic resonance imaging relaxation times and gait variability.

Methods: T1ρ magnetic resonance imaging and gait kinematics were collected in 22 ACLR participants (13 women; 21 ± 4 yr old; 7.52 ± 1.43 months post-ACLR). Femoral articular cartilage from the ACLR and uninjured limbs were segmented into anterior, central, and posterior regions from the weight-bearing portions of the medial and lateral condyles. Mean T1ρ relaxation times were extracted from each region and interlimb ratios (ILR) were calculated (i.e., ACLR/uninjured limb). Greater T1ρ ILR values were interpreted as less proteoglycan density (worse cartilage composition) in the injured limb compared with the uninjured limb. Knee kinematics were collected at a self-selected comfortable walking speed on a treadmill with an eight-camera three-dimensional motion capture system. Frontal and sagittal plane kinematics were extracted, and sample entropy was used to calculate kinematic variability structure (KV structure ). Pearson's product-moment correlations were conducted to determine the associations between T1ρ and KV structure variables.

Results: Lesser frontal plane KV structure was associated with greater mean T1ρ ILR in the anterior lateral ( r = - 0.44, P = 0.04) and anterior medial condyles ( r = - 0.47, P = 0 .03). Lesser sagittal plane KV structure was associated with greater mean T1ρ ILR in the anterior lateral condyle ( r = - 0.47, P = 0.03).

Conclusions: The association between less KV structure and worse femoral articular cartilage proteoglycan density suggests a link between less variable knee kinematics and deleterious changes joint tissue changes. The findings suggest that less knee kinematic variability structure is a mechanism linking aberrant gait to early osteoarthritis development.

Publication types

  • Research Support, N.I.H., Extramural

MeSH terms

  • Anterior Cruciate Ligament Injuries* / surgery
  • Biomechanical Phenomena
  • Cartilage, Articular* / chemistry
  • Female
  • Gait
  • Humans
  • Knee Joint
  • Magnetic Resonance Imaging / methods
  • Osteoarthritis, Knee* / pathology
  • Proteoglycans / analysis

Substances

  • Proteoglycans