The capsid lattice engages a bipartite NUP153 motif to mediate nuclear entry of HIV-1 cores

Proc Natl Acad Sci U S A. 2023 Mar 28;120(13):e2202815120. doi: 10.1073/pnas.2202815120. Epub 2023 Mar 21.

Abstract

Increasing evidence has suggested that the HIV-1 capsid enters the nucleus in a largely assembled, intact form. However, not much is known about how the cone-shaped capsid interacts with the nucleoporins (NUPs) in the nuclear pore for crossing the nuclear pore complex. Here, we elucidate how NUP153 binds HIV-1 capsid by engaging the assembled capsid protein (CA) lattice. A bipartite motif containing both canonical and noncanonical interaction modules was identified at the C-terminal tail region of NUP153. The canonical cargo-targeting phenylalanine-glycine (FG) motif engaged the CA hexamer. By contrast, a previously unidentified triple-arginine (RRR) motif in NUP153 targeted HIV-1 capsid at the CA tri-hexamer interface in the capsid. HIV-1 infection studies indicated that both FG- and RRR-motifs were important for the nuclear import of HIV-1 cores. Moreover, the presence of NUP153 stabilized tubular CA assemblies in vitro. Our results provide molecular-level mechanistic evidence that NUP153 contributes to the entry of the intact capsid into the nucleus.

Keywords: HIV-1 capsid; NUP153; RRR-motif; lattice stabilization; nuclear entry.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, N.I.H., Extramural
  • Research Support, N.I.H., Intramural

MeSH terms

  • Active Transport, Cell Nucleus
  • Capsid / metabolism
  • Capsid Proteins / metabolism
  • HIV Infections* / metabolism
  • HIV Seropositivity*
  • HIV-1* / metabolism
  • Humans
  • Nuclear Pore / metabolism
  • Nuclear Pore Complex Proteins / metabolism

Substances

  • Capsid Proteins
  • Nuclear Pore Complex Proteins
  • NUP153 protein, human