Phos-tag, a selective phosphate-binding molecule, and Phos-tag-based methodologies have been developed to investigate the phosphoproteome. In various analytical techniques using Phos-tag derivatives, phosphate-affinity electrophoresis using Phos-tag acrylamide, called Phos-tag SDS-PAGE, enables separation of phosphorylated proteins with a slower migration from non-phosphorylated proteins in polyacrylamide gels. The procedures for Phos-tag SDS-PAGE are largely common to those for conventional SDS-PAGE, thus being readily available for all laboratories. Phos-tag SDS-PAGE is widely applied to quantitative analysis of the overall phosphorylation state depending on the number and/or sites of the phosphate group. Phos-tag SDS-PAGE has also been introduced to the field of peroxisome study, including oxidative stress-induced and mitosis-specific phosphorylation of Pex14, a central component of the translocation machinery complex for peroxisomal matrix proteins. Here, we describe a practical protocol for Phos-tag SDS-PAGE and its application to peroxisome biogenesis research.
Keywords: Peroxins; Peroxisome; Phos-tag SDS-PAGE; Phosphorylation; Protein import.
© 2023. The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature.