Dynamic Equilibrium at the HCOOH-Saturated TiO2(110)-Water Interface

J Phys Chem Lett. 2023 Apr 6;14(13):3132-3138. doi: 10.1021/acs.jpclett.2c03788. Epub 2023 Mar 23.

Abstract

Carboxylic acids bind to titanium dioxide (TiO2) dissociatively, forming surface superstructures that give rise to a (2 × 1) pattern detected by low-energy electron diffraction. Exposing this system to water, however, leads to a loss of the highly ordered surface structure. The formate-covered surface was investigated by a combination of diffraction and spectroscopy techniques, together with static and dynamic ab initio simulations, with the conclusion that a dynamic equilibrium exists between adsorbed formic acid and water molecules. This equilibrium process is an important factor for obtaining a better understanding of controlling the self-cleaning properties of TiO2, because the formic acid monolayer is responsible for the amphiphilic character of the surface.