Cerebral amyloid-β (Aβ) accumulation due to impaired Aβ clearance is a pivotal event in the pathogenesis of Alzheimer's disease (AD). Considerable brain-derived Aβ is cleared via transporting to the periphery. The liver is the largest organ responsible for the clearance of metabolites in the periphery. Whether the liver physiologically clears circulating Aβ and its therapeutic potential for AD remains unclear. Here, we found that about 13.9% of Aβ42 and 8.9% of Aβ40 were removed from the blood when flowing through the liver, and this capacity was decreased with Aβ receptor LRP-1 expression down-regulated in hepatocytes in the aged animals. Partial blockage of hepatic blood flow increased Aβ levels in both blood and brain interstitial fluid. The chronic decline in hepatic Aβ clearance via LRP-1 knockdown specific in hepatocytes aggravated cerebral Aβ burden and cognitive deficits, while enhancing hepatic Aβ clearance via LRP-1 overexpression attenuated cerebral Aβ deposition and cognitive impairments in APP/PS1 mice. Our findings demonstrate that the liver physiologically clears blood Aβ and regulates brain Aβ levels, suggesting that a decline of hepatic Aβ clearance during aging could be involved in AD development, and hepatic Aβ clearance is a novel therapeutic approach for AD.
Keywords: Alzheimer’s disease; Clearance; LRP-1; Liver; β-Amyloid.
© 2023. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.