In synthetic biology, biosensors are routinely coupled with a gene expression system for detecting small molecules and physical signals. We reveal a fluorescent complex, based on the interaction of an Escherichia coli double bond reductase (EcCurA), as a detection unit with its substrate curcumin-we call this a direct protein (DiPro) biosensor. Using a cell-free synthetic biology approach, we use the EcCurA DiPro biosensor to fine tune 10 reaction parameters (cofactor, substrate, and enzyme levels) for cell-free curcumin biosynthesis, assisted through acoustic liquid handling robotics. Overall, we increase EcCurA-curcumin DiPro fluorescence within cell-free reactions by 78-fold. This finding adds to the growing family of protein-ligand complexes that are naturally fluorescent and potentially exploitable for a range of applications, including medical imaging to engineering high-value chemicals.
Keywords: biosensor; cell‐free; curcumin; fine chemical; synthetic biology.
© 2022 The Authors. Engineering Biology published by John Wiley & Sons Ltd on behalf of The Institution of Engineering and Technology.