Laminated graphene film has great potential in compact high-power capacitive energy storage owing to the high bulk density and opened architecture. However, the high-power capability is usually limited by tortuous cross-layer ion diffusion. Herein, microcrack arrays are fabricated in graphene films as fast ion diffusion channels, converting tortuous diffusion into straightforward diffusion while maintaining a high bulk density of 0.92 g cm-3 . Films with optimized microcrack arrays exhibit sixfold improved ion diffusion coefficient and high volumetric capacitance of 221 F cm-3 (240 F g-1 ), representing a critical breakthrough in optimizing ion diffusion toward compact energy storage. This microcrack design is also efficient for signal filtering. Microcracked graphene-based supercapacitor with 30 µg cm-2 mass loading exhibits characteristic frequency up to 200 Hz with voltage window up to 4 V, showing high promise for compact, high-capacitance alternating current (AC) filtering. Moreover, a renewable energy system is conducted using microcrack-arrayed graphene supercapacitors as filter-capacitor and energy buffer, filtering and storing the 50 Hz AC electricity from a wind generator into the constant direct current, stably powering 74 LEDs, demonstrating enormous potential in practical applications. More importantly, this microcracking approach is roll-to-roll producible, which is cost-effective and highly promising for large-scale manufacture.
Keywords: compact supercapacitors; fast ion diffusion; graphene; microcracks; roll to roll.
© 2023 Wiley-VCH GmbH.