[The role of semaphorin 4D in the mechanism of bisphosphonate-related osteonecrosis of the jaw in rats]

Shanghai Kou Qiang Yi Xue. 2022 Dec;31(6):625-631.
[Article in Chinese]

Abstract

Purpose: To study the expression level of semaphorin 4D (Sema4D) in bisphosphonate-related osteonecrosis of the jaw (BRONJ) and to explore its possible role in the occurrence of BRONJ.

Methods: BRONJ-like rat model was established by intraperitoneal injection of zoledronic acid assisted with tooth extraction. The maxillary specimens were extracted for imaging and histological examination, and bone marrow mononuclear cells(BMMs) and bone marrow mesenchymal stem cells(BMSCs) of each group were obtained in vitro for co-culture. Trap staining and counting were performed on monocytes after osteoclast induction. RAW264.7 cells were induced by osteoclast orientation under bisphosphonates(BPs) environment, and Sema4D expression was detected. Similarly, MC3T3-E1 cells and BMSCs were induced to osteogenic orientation in vitro, and the expression level of osteogenic and osteoclastic related genes ALP, Runx2, and RANKL was detected under the intervention of BPs, Sema4D and Sema4D antibody. Statistical analysis of the data was performed using GraphPad Prism 8.0 software.

Results: BRONJ-like rat model was successfully constructed. Two weeks after tooth extraction, the healing of the tooth extraction wound in the experimental group was significantly limited, and the tooth extraction wound was exposed. H-E staining results showed that regeneration of new bone in the extraction socket of the experimental group was significantly restricted, dead bone was formed, and the healing of the soft tissue was limited. The results of trap staining showed that the number of osteoclasts in the experimental group was significantly less than that in the control group. Micro-CT results showed that bone mineral density and bone volume fraction in the extraction socket of the experimental group were significantly lower than those of the control group. Immunohistochemical results showed that compared with the control group, the expression level of Sema4D in the experimental group was significantly increased. In vitro studies showed that compared with the control group, the osteoclast induction of BMMs in the experimental group was significantly lower than that in the control group. BMSCs in the experimental group significantly reduced the induction of osteoclasts. Osteoclastic induction experiments revealed that bisphosphonates could effectively inhibit the formation of osteoclasts, and the expression of Sema4D was significantly reduced. Osteogenic induction experiment found that Sema4D significantly reduced the expression of Runx2 and RANKL genes in osteoblasts, while the expression of ALP gene decreased and the expression of RANKL up-regulated after adding Sema4D antibody.

Conclusions: BPs can interfere with normal bone healing time by up-regulating the expression of Sema4D in tissues, leading to coupling disorder between osteoclasts and osteoblasts with inhibition of the maturation of osteoclasts, thereby inhibiting the growth of osteoblasts. Differentiation and expression of related osteogenic factors mediate the development of BRONJ.

Publication types

  • English Abstract

MeSH terms

  • Animals
  • Bisphosphonate-Associated Osteonecrosis of the Jaw* / genetics
  • Bisphosphonate-Associated Osteonecrosis of the Jaw* / metabolism
  • Bisphosphonate-Associated Osteonecrosis of the Jaw* / pathology
  • Core Binding Factor Alpha 1 Subunit / metabolism
  • Diphosphonates / adverse effects
  • Osteoclasts
  • Rats
  • Semaphorins* / genetics
  • Semaphorins* / metabolism
  • Zoledronic Acid / adverse effects

Substances

  • CD100 antigen
  • Core Binding Factor Alpha 1 Subunit
  • Diphosphonates
  • Zoledronic Acid
  • Semaphorins