Machine Learning Model Based on Optimized Radiomics Feature from 18F-FDG-PET/CT and Clinical Characteristics Predicts Prognosis of Multiple Myeloma: A Preliminary Study

J Clin Med. 2023 Mar 15;12(6):2280. doi: 10.3390/jcm12062280.

Abstract

Objects: To evaluate the prognostic value of radiomics features extracted from 18F-FDG-PET/CT images and integrated with clinical characteristics and conventional PET/CT metrics in newly diagnosed multiple myeloma (NDMM) patients.

Methods: We retrospectively reviewed baseline clinical information and 18F-FDG-PET/CT imaging data of MM patients with 18F-FDG-PET/CT. Multivariate Cox regression models involving different combinations were constructed, and stepwise regression was performed: (1) radiomics features of PET/CT alone (Rad Model); (2) Using clinical data (including clinical/laboratory parameters and conventional PET/CT metrics) only (Cli Model); (3) Combination radiomics features and clinical data (Cli-Rad Model). Model performance was evaluated by C-index and Net Reclassification Index (NRI).

Results: Ninety-eight patients with NDMM who underwent 18F-FDG-PET/CT between 2014 and 2019 were included in this study. Combining radiomics features from PET/CT with clinical data showed higher prognostic performance than models with radiomics features or clinical data alone (C-index 0.790 vs. 0.675 vs. 0.736 in training cohort; 0.698 vs. 0.651 vs. 0.563 in validation cohort; AUC 0.761, sensitivity 56.7%, specificity 85.7%, p < 0.05 in training cohort and AUC 0.650, sensitivity 80.0%, specificity78.6%, p < 0.05 in validation cohort) When clinical data was combined with radiomics, an increase in the performance of the model was observed (NRI > 0).

Conclusions: Radiomics features extracted from the PET and CT components of baseline 18F-FDG-PET/CT images may become an effective complement to provide prognostic information; therefore, radiomics features combined with clinical characteristic may provide clinical value for MM prognosis prediction.

Keywords: 18F-FDG-PET/CT; multiple myeloma; prognostic value; radiomics features.

Grants and funding

This work was supported by grants from Shanghai Hospital Development Center for Research called “Three-year action plan for major clinical research program” (Grant No. SHDC2020CR20708) and National Natural Science Foundation of China (Grant No.82102089).