Low carbon ferrochrome slag (LCFS) is the metallurgical waste slag from the carbon ferrochrome alloy smelting process. Compared with high carbon ferrochrome slag, LCFS has great potential as cementitious material; the chemical compositions of the two types of slag are quite different. In this research, composite cementitious materials are prepared which use low carbon ferrochrome slag and granulated blast furnace slag (GBFS) as the main raw material. Steel slag mud (SSM) and flue gas desulfurization gypsum (FGDG) are used as the activator. In order to find the variety rule of compressive strength on the composite cementitious materials, a three-factor three-level Box-Behnken design is used to discuss the following independent variables: LCFS content, GBFS content, and water-binder ratio. Moreover, the hydration characteristics of the LCFS-GBFS composite cementitious materials is studied in this paper in terms of hydration product, micromorphology, and hydration degree, based on multi-technical microstructural characterizations. The results show that the compressive strength of the LCFS-GBFS composite cementitious materials is significantly affected by single factors and the interaction of two factors. The mechanical property of the mortar samples at 3, 7, and 28 days are 26.6, 35.3, and 42.7 MPa, respectively, when the LCFS-GBFS-SSM-FGDG ratio is 3:5:1:1 and the water-binder ratio is 0.3. The hydration products of LCFS-GBFS composite cementitious materials are mainly amorphous gels (C-S-H gel), ettringite, and Ca(OH)2. With the increase of LCFS content, more hydration products are generated, and the microstructure of the cementitious system becomes more compact, which contributes to the compressive strength. The results of this research can provide a preliminary theoretical foundation for the development of LCFS-GBFS composite cementitious materials and promote the feasibility of its application in the construction industry. Deep hydration mechanism analysis and engineering applications should be studied in the future.
Keywords: composite cementitious materials; compressive strength; hydration characteristics; low carbon ferrochrome slag; solid waste.