Background: In tropical sugarcane crops, the fungus Fusarium verticillioides, the agent responsible for the occurrence of the red rot complex, occurs in association with the sugarcane borer Diatraea saccharalis. This fungus, in addition to being transmitted vertically, can manipulate both the insect and the plant for its own dissemination in the field. Due to the complex interaction between F. verticillioides and D. saccharalis, and the high incidence of the fungus in the intestinal region, our objective was to investigate whether F. verticillioides could alter the intestinal structure of the insect.
Methods: We combined analysis of scanning electron microscopy and light microscopy to identify whether the presence of the fungus F. verticillioides, in artificial diets or in sugarcane, could lead to any alteration or regional preference in the insect's intestinal ultrastructure over the course of its development, or its offspring development, analyzing the wall and microvillous structures of the mid-digestive system.
Results: Here, we show that the fungus F. verticillioides alters the intestinal morphology of D. saccharalis, promoting an increase of up to 3.3 times in the thickness of the midgut compared to the control. We also observed that the phytopathogen colonizes the intestinal microvilli for reproduction, suggesting that this region can be considered the gateway of the fungus to the insect's reproductive organs. In addition, the colonization of this region promoted the elongation of microvillous structures by up to 180% compared to the control, leading to an increase in the area used for colonization. We also used the fungus Colletotrichum falcatum in the tests, and it did not differ from the control in any test, showing that this interaction is specific between D. saccharalis and F. verticillioides.
Conclusions: The phytopathogenic host F. verticillioides alters the intestinal morphology of the vector insect in favor of its colonization.
Keywords: Diatraea saccharalis; colonization of microvilli; insect–fungus interactions; red rot disease.