Superhydrophobicity has only recently become a requirement in membrane fabrication and modification. Superhydrophobic membranes have shown improved flux performance and scaling resistance in long-term membrane distillation (MD) operations compared to simply hydrophobic membranes. Here, we introduce plasma micro- and nanotexturing followed by plasma deposition as a novel, dry, and green method for superhydrophobic membrane fabrication. Using plasma micro- and nanotexturing, commercial membranes, both hydrophobic and hydrophilic, are transformed to superhydrophobic featuring water static contact angles (WSCA) greater than 150° and contact angle hysteresis lower than 10°. To this direction, hydrophobic polytetrafluoroethylene (PTFE) and hydrophilic cellulose acetate (CA) membranes are transformed to superhydrophobic. The superhydrophobic PTFE membranes showed enhanced water flux in standard air gap membrane distillation and more stable performance compared to the commercial ones for at least 48 h continuous operation, with salt rejection >99.99%. Additionally, their performance and high salt rejection remained stable, when low surface tension solutions containing sodium dodecyl sulfate (SDS) and NaCl (down to 35 mN/m) were used, showcasing their antiwetting properties. The improved performance is attributed to superhydrophobicity and increased pore size after plasma micro- and nanotexturing. More importantly, CA membranes, which are initially unsuitable for MD due to their hydrophilic nature (WSCA ≈ 40°), showed excellent performance with stable flux and salt rejection >99.2% again for at least 48 h, demonstrating the effectiveness of the proposed method for wetting control in membranes regardless of their initial wetting properties.
Keywords: desalination; membrane distillation; plasma deposition; plasma nanotexturing; superhydrophobic membranes; superhydrophobicity.