A role for ethylene signaling and biosynthesis in regulating and accelerating CO2 - and abscisic acid-mediated stomatal movements in Arabidopsis

New Phytol. 2023 Jun;238(6):2460-2475. doi: 10.1111/nph.18918. Epub 2023 Apr 13.

Abstract

Little is known about long-distance mesophyll-driven signals that regulate stomatal conductance. Soluble and/or vapor-phase molecules have been proposed. In this study, the involvement of the gaseous signal ethylene in the modulation of stomatal conductance in Arabidopsis thaliana by CO2 /abscisic acid (ABA) was examined. We present a diffusion model which indicates that gaseous signaling molecule/s with a shorter/direct diffusion pathway to guard cells are more probable for rapid mesophyll-dependent stomatal conductance changes. We, therefore, analyzed different Arabidopsis ethylene-signaling and biosynthesis mutants for their ethylene production and kinetics of stomatal responses to ABA/[CO2 ]-shifts. According to our research, higher [CO2 ] causes Arabidopsis rosettes to produce more ethylene. An ACC-synthase octuple mutant with reduced ethylene biosynthesis exhibits dysfunctional CO2 -induced stomatal movements. Ethylene-insensitive receptor (gain-of-function), etr1-1 and etr2-1, and signaling, ein2-5 and ein2-1, mutants showed intact stomatal responses to [CO2 ]-shifts, whereas loss-of-function ethylene receptor mutants, including etr2-3;ein4-4;ers2-3, etr1-6;etr2-3 and etr1-6, showed markedly accelerated stomatal responses to [CO2 ]-shifts. Further investigation revealed a significantly impaired stomatal closure to ABA in the ACC-synthase octuple mutant and accelerated stomatal responses in the etr1-6;etr2-3, and etr1-6, but not in the etr2-3;ein4-4;ers2-3 mutants. These findings suggest essential functions of ethylene biosynthesis and signaling components in tuning/accelerating stomatal conductance responses to CO2 and ABA.

Keywords: CO2; abscisic acid (ABA); diffusion modeling; ethylene; mesophyll; stomatal conductance.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Abscisic Acid / metabolism
  • Abscisic Acid / pharmacology
  • Arabidopsis Proteins* / genetics
  • Arabidopsis Proteins* / metabolism
  • Arabidopsis* / metabolism
  • Carbon Dioxide / metabolism
  • Carbon Dioxide / pharmacology
  • Ethylenes / metabolism
  • Plant Stomata / physiology

Substances

  • Abscisic Acid
  • Arabidopsis Proteins
  • Carbon Dioxide
  • ethylene
  • Ethylenes