Many Rickettsia species of the spotted fever group (SFG) cause tick-borne diseases known as "spotted fever." One of the candidate SFG Rickettsia species is "Candidatus Rickettsia kotlanii," which was first detected in Haemaphysalis concinna in Hungary in 2006. However, its precise phylogenetic position in the SFG is not clear because only single-gene sequence-based phylogenetic analyses were performed using very limited genes. Here, we present the complete genome sequences of two Japanese "Ca. R. kotlanii" isolates, which differed only by a 135 bp insertion/deletion (InDel). Using these genomes and publicly available whole genome sequences of other Rickettsia species, the precise phylogenetic position of "Ca. R. kotlanii" in Rickettsia was determined to be in a clade of the SFG. The phylogenetic relationships and average nucleotide identity of "Ca. R. kotlanii" relative to the other species indicated that "Ca. R. kotlanii" is an independent taxon in the SFG. Notably, although the genomes of the two isolates were almost identical, the isolates were obtained from different tick species in different regions and years, suggesting extremely low genomic diversity in "Ca. R. kotlanii." While the genome of "Ca. R. kotlanii" is the smallest in the transitional group and SFG Rickettsia sequenced to date, we identified genes uniquely present or absent in "Ca. R. kotlanii," but most were apparently degraded. Therefore, analyses of differences at the sequence (single nucleotide polymorphisms and small InDels) or gene expression level will be required to understand the functional or physiological features unique to "Ca. R. kotlanii."
Keywords: Rickettsia; genomic diversity; spotted fever group; whole-genome phylogeny; “Candidatus Rickettsia kotlanii”.
© 2023 The Authors. Microbiology and Immunology published by The Societies and John Wiley & Sons Australia, Ltd.