Formulating ready-to-eat (RTE) products with growth inhibitors minimizes the risk of listeriosis. In part I, RTE egg products formulated with 6.25 ppm nisin were evaluated to control Listeria monocytogenes. Individual experimental units were surface inoculated with 2.5-log CFU/g of L. monocytogenes, packaged in pouches with a headspace gas of 20:80 CO2:NO2, and stored at 4.4°C for 8 weeks. Formulations with finished product pH of 6.29 ± 0.07 limited growth to <2-log for 4 weeks. Products at pH values of 7.42 ± 0.12 and 7.84 ± 0.11 were not different (p > 0.05) from the control without nisin at pH 7.34 ± 0.13, all supported 4-log growth by 4 weeks. In part II, a nisin bioassay test was performed to evaluate the stability of nisin in eggs as affected by the product pH (6.00 ± 0.03, 7.00 ± 0.00, 7.50 ± 0.03, and 8.00 ± 0.02) and cooking to an internal temperature of 73.9 or 85°C for 90 s. The nisin activity loss increased as the product pH or the cooking temperature increased (p < 0.05). Part III evaluated the effectiveness of 6.25 ppm nisin in combination with either an acetate-based antimicrobial used at 1.0% (w/w) in egg formulation (A1.0), propionate at 0.3% (P0.3), acetate-diacetate at 1.0% (AD1.0), acetate-diacetate at 0.6% (AD0.6), and lactate at 2.0% (L2.0) as a positive control. These formulations had a finished product pH, moisture, and salt contents of 5.97 ± 0.21, 72.4 ± 0.9%, and 0.67 ± 0.05%, respectively. L. monocytogenes did not grow in formulations A1.0 and AD1.0, whereas L2.0 and P0.3 supported 2-log growth by weeks 6 and 15, respectively and AD0.6 supported <1-log growth over 20 weeks at 4.4°C. Evaluation of uninoculated control units in parts I and III showed no changes (p > 0.05) in the CO2 and O2 headspace gas composition, generally no detection or growth of background microbes, and no changes (p > 0.05) in the pH of the formulations during storage, all assuring absence of uncontrolled interferences for the growth of L. monocytogenes.
Keywords: Cooked egg; Listeria monocytogenes; Nisin; Organic acid; Refrigerated food.
Copyright © 2023 The Author(s). Published by Elsevier Inc. All rights reserved.