Integrating photovoltaic devices onto the surface of carbon-fiber-reinforced polymer substrates should create materials with high mechanical strength that are also able to generate electrical power. Such devices are anticipated to find ready applications as structural, energy-harvesting systems in both the automotive and aeronautical sectors. Here, the fabrication of triple-cation perovskite n-i-p solar cells onto the surface of planarized carbon-fiber-reinforced polymer substrates is demonstrated, with devices utilizing a transparent top ITO contact. These devices also contain a "wrinkled" SiO2 interlayer placed between the device and substrate that alleviates thermally induced cracking of the bottom ITO layer. Devices are found to have a maximum stabilized power conversion efficiency of 14.5% and a specific power (power per weight) of 21.4 W g-1 (without encapsulation), making them highly suitable for mobile power applications.
Keywords: carbon‐fiber‐reinforced polymers; integrated photovoltaics; perovskite solar cells; specific power; structural photovoltaics.
© 2023 The Authors. Advanced Materials published by Wiley‐VCH GmbH.