Prediction and visualization of Mergers and Acquisitions using Economic Complexity

PLoS One. 2023 Apr 3;18(4):e0283217. doi: 10.1371/journal.pone.0283217. eCollection 2023.

Abstract

Mergers and Acquisitions represent important forms of business deals, both because of the volumes involved in the transactions and because of the role of the innovation activity of companies. Nevertheless, Economic Complexity methods have not been applied to the study of this field. By considering the patent activity of about one thousand companies, we develop a method to predict future acquisitions by assuming that companies deal more frequently with technologically related ones. We address both the problem of predicting a pair of companies for a future deal and that of finding a target company given an acquirer. We compare different forecasting methodologies, including machine learning and network-based algorithms, showing that a simple angular distance with the addition of the industry sector information outperforms the other approaches. Finally, we present the Continuous Company Space, a two-dimensional representation of firms to visualize their technological proximity and possible deals. Companies and policymakers can use this approach to identify companies most likely to pursue deals or explore possible innovation strategies.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Algorithms
  • Commerce*
  • Forecasting
  • Industry*
  • Technology

Grants and funding

This work was supported by the Centro Ricerche Enrico Fermi (CREF) project “Complessità in Economia" and by the Istituto Sistemi Complessi (ISC-CNR) project "A data-driven complexity approach for economic growth". The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.