Aims: To effectively deliver small interfering RNA (siRNA) to inflammatory tissues for treating rheumatoid arthritis (RA), we developed the multifunctional microbubbles (MBs) to perform photoacoustic/ultrasound-guided gene silencing.
Methods: Fluorescein amidite (FAM)-labelled tumour necrosis factor-α (TNF-α)-siRNA and cationic MBs were mixed to fabricate FAM-TNF-α-siRNA-cMBs. The cell transfection efficacy of FAM-TNF-α-siRNA-cMBs was evaluated in vitro on RAW264.7 cells. Subsequently, wistar rats with adjuvant-induced arthritis (AIA) were injected intravenously with MBs and simultaneously subjected to low-frequency ultrasound for ultrasound-targeted microbubble destruction (UTMD). Photoacoustic imaging (PAI) was utilized to visualize the distribution of siRNA. And the clinical and pathological changes of AIA rats was estimated.
Results: FAM-TNF-α-siRNA-cMBs were evenly distributed within the RAW264.7 cells and significantly reduced TNF-α mRNA levels of the cells. For AIA rats, the entering and collapsing of MBs was visualized by contrast-enhanced ultrasound (CEUS). Photoacoustic imaging showed markedly enhanced signals following injection, indicating localization of the FAM-labelled siRNA. The articular tissues of the AIA rats treated with TNF-α-siRNA-cMBs and UTMD showed decreased TNF-α expression levels.
Conclusions: The theranostic MBs exhibited a TNF-α gene silencing effect under the guidance of CEUS and PAI. The theranostic MBs served as vehicles for delivering siRNA as well as contrast agents for CEUS and PAI.
Keywords: Contrast-enhanced ultrasound; Microbubble; Photoacoustic imaging; Rheumatoid arthritis; TNF-α gene silencing; Ultrasound-targeted microbubble destruction.
Copyright © 2023 Elsevier B.V. All rights reserved.