Characterization of a HIR-Fab-IDS, Novel Iduronate 2-Sulfatase Fusion Protein for the Treatment of Neuropathic Mucopolysaccharidosis Type II (Hunter Syndrome)

BioDrugs. 2023 May;37(3):375-395. doi: 10.1007/s40259-023-00590-w. Epub 2023 Apr 4.

Abstract

Background: Mucopolysaccharidosis type II is a severe lysosomal storage disease caused by deficient activity of the enzyme iduronate-2-sulfatase. The only medicinal product approved by the US Food and Drug Administration for enzyme replacement therapy, recombinant iduronate-2-sulfatase (idursulfase, Elaprase®), is a large molecule that is not able to cross the blood-brain barrier and neutralize progressive damage of the central nervous system caused by the accumulation of glycosaminoglycans. Novel chimeric protein HIR-Fab-IDS is an anti-human insulin receptor Fab fragment fused to recombinant modified iduronate-2-sulfatase. This modification provides a highly selective interaction with the human insulin receptor, which leads to the HIR-Fab-IDS crossing the blood-brain barrier owing to internalization of the hybrid molecule by transcytosis into endothelial cells adjacent to the nervous system by the principle of a 'molecular Trojan horse'.

Objectives: In this work, the physicochemical and biological characterization of a blood-brain barrier-penetrating fusion protein, HIR-Fab-IDS, is carried out. HIR-Fab-IDS consists of an anti-human insulin receptor Fab fragment fused to recombinant iduronate-2-sulfatase.

Methods: Comprehensive analytical characterization utilizing modern techniques (including surface plasmon resonance and mass spectrometry) was performed using preclinical and clinical batches of HIR-Fab-IDS. Critical quality parameters that determine the therapeutic effect of iduronate-2-sulfatase, as well as IDS enzymatic activity and in vitro cell uptake activity were evaluated in comparison with the marketed IDS product Elaprase® (IDS RP). In vivo efficiency of HIR-Fab-IDS in reversing mucopolysaccharidosis type II pathology in IDS-deficient mice was also investigated. The affinity of the chimeric molecule for the INSR was also determined by both an enzyme-linked immunosorbent assay and surface plasmon resonance. We also compared the distribution of 125I-radiolabeled HIR-Fab-IDS and IDS RP in the tissues and brain of cynomolgus monkeys after intravenous administration.

Results: The HIR-Fab-IDS primary structure investigation showed no significant post-translational modifications that could affect IDS activity, except for the formylglycine content, which was significantly higher for HIR-Fab-IDS compared with that for IDS RP (~ 76.5 vs ~ 67.7%). Because of this fact, the specific enzyme activity of HIR-Fab-IDS was slightly higher than that of IDS RP (~ 2.73 × 106 U/μmol vs ~ 2.16 × 106 U/μmol). However, differences were found in the glycosylation patterns of the compared IDS products, causing a minor reduced in vitro cellular uptake of HIR-Fab-IDS by mucopolysaccharidosis type II fibroblasts compared with IDS RP (half-maximal effective concentration ~ 26.0 vs ~ 23.0 nM). The efficacy of HIR-Fab-IDS in IDS-deficient mice has demonstrated a statistically significant reduction in the level of glycosaminoglycans in the urine and tissues of the main organs to the level of healthy animals. The HIR-Fab-IDS has revealed high in vitro affinity for human and monkey insulin receptors, and the radioactively labeled product has been shown to penetrate to all parts of the brain and peripheral tissues after intravenous administration to cynomolgus monkeys.

Conclusions: These findings indicate that HIR-Fab-IDS, a novel iduronate-2-sulfatase fusion protein, is a promising candidate for the treatment of central nervous system manifestations in neurological mucopolysaccharidosis type II.

MeSH terms

  • Animals
  • Endothelial Cells / metabolism
  • Glycosaminoglycans / metabolism
  • Glycosaminoglycans / therapeutic use
  • Humans
  • Iduronic Acid
  • Macaca fascicularis / metabolism
  • Mice
  • Mucopolysaccharidosis II* / drug therapy
  • Receptor, Insulin
  • Recombinant Proteins / therapeutic use
  • United States

Substances

  • Receptor, Insulin
  • Iduronic Acid
  • Recombinant Proteins
  • Glycosaminoglycans