MUC1 induces the accumulation of Foxp3+ Treg cells in the tumor microenvironment to promote the growth and metastasis of cholangiocarcinoma through the EGFR/PI3K/Akt signaling pathway

Int Immunopharmacol. 2023 May:118:110091. doi: 10.1016/j.intimp.2023.110091. Epub 2023 Apr 3.

Abstract

Tumor microenvironment (TME) plays an important role in the progression of cholangiocarcinoma. This study aims to explore whether Mucin 1 (MUC1) regulates Foxp3+ Treg cells in the TME of cholangiocarcinoma through the epidermal growth factor receptor (EGFR)/phosphatidylinositol-3-kinase (PI3K)/Akt signaling pathway. High-throughput sequencing dataset in the GEO database combined with GeneCards and Phenolyzer databases was used to obtain key genes in cholangiocarcinoma, followed by downstream pathway prediction. The relationship among MUC1, EGFR, and PI3K/Akt signaling pathway was explored. CD4+ T cells extracted from peripheral blood were induced to differentiate into Treg cells, followed by co-culture with cholangiocarcinoma cells. A mouse model was constructed to detect the role of MUC1 in the accumulation of Foxp3+ Treg cells, malignant phenotypes of cholangiocarcinoma, and tumorigenesis in vivo. MUC1, highly expressed in cholangiocarcinoma, might be involved in cholangiocarcinoma development. MUC1 interacted with the EGFR to activate the EGFR/PI3K/Akt signaling pathway. MUC1 overexpression could activate the EGFR/PI3K/Akt signaling pathway, which promoted the accumulation of Foxp3+ Treg cells in the TME and the malignant phenotypes of cholangiocarcinoma cells both in vitro and in vivo and enhanced tumorigenesis in vivo. MUC1 may interact with EGFR to activate the EGFR/PI3K/Akt signaling pathway, which induces the accumulation of Foxp3+ Treg cells, enhancing the malignant phenotypes of cholangiocarcinoma cells and tumorigenesis in vivo and ultimately augmenting cholangiocarcinoma growth and metastasis.

Keywords: Cholangiocarcinoma; EGFR/PI3K/Akt signaling pathway; Foxp3(+) Treg cells; MUC1; Tumor microenvironment.

MeSH terms

  • Animals
  • Bile Duct Neoplasms* / metabolism
  • Bile Ducts, Intrahepatic / metabolism
  • Bile Ducts, Intrahepatic / pathology
  • Carcinogenesis
  • Cell Line, Tumor
  • Cholangiocarcinoma* / metabolism
  • ErbB Receptors / genetics
  • ErbB Receptors / metabolism
  • Forkhead Transcription Factors / genetics
  • Forkhead Transcription Factors / metabolism
  • Mice
  • Mucin-1 / genetics
  • Phosphatidylinositol 3-Kinase / metabolism
  • Phosphatidylinositol 3-Kinases / metabolism
  • Proto-Oncogene Proteins c-akt / metabolism
  • Signal Transduction
  • T-Lymphocytes, Regulatory / metabolism
  • Tumor Microenvironment

Substances

  • Phosphatidylinositol 3-Kinase
  • Proto-Oncogene Proteins c-akt
  • Phosphatidylinositol 3-Kinases
  • Mucin-1
  • ErbB Receptors
  • Foxp3 protein, mouse
  • Forkhead Transcription Factors