Purpose: A subset of asthmatics suffers from persistent airflow limitation, known as remodeled asthma, despite optimal treatment. Typical quantitative scoring methods to evaluate structural changes of airway remodeling on high-resolution computed tomography (HRCT) are time-consuming and laborious. Thus, easier and simpler methods are required in clinical practice. We evaluated the clinical usefulness of a simple, semi-quantitative method based on 8 HRCT parameters by comparing asthmatics with a persistent decline of post-bronchodilator (BD)-FEV1 to those with a BD-FEV1 that normalized over time and evaluated the relationships of the parameters with BD-FEV1.
Methods: Asthmatics (n = 59) were grouped into 5 trajectories (Trs) according to the changes of BD-FEV1 over 1 year. After 9-12 months of guideline-based treatment, HRCT parameters including emphysema, bronchiectasis, anthracofibrosis, bronchial wall thickening (BWT), fibrotic bands, mosaic attenuation on inspiration, air-trapping on expiration, and centrilobular nodules were classified as present (1) or absent (0) in 6 zones.
Results: The Tr5 group (n = 11) was older and exhibited a persistent decline in BD-FEV1. The Tr5 and Tr4 groups (n = 12), who had a lower baseline BD-FEV1 that normalized over time, had longer durations of asthma, frequent exacerbations, and higher doses of steroid use compared to the Tr1-3 groups (n = 36), who had a normal baseline BD-FEV1. The Tr5 group had higher emphysema and BWT scores than the Tr4 (P = 8.25E-04 and P = 0.044, respectively). Scores for the other 6 parameters were not significantly different among the Tr groups. BD-FEV1 was inversely correlated with the emphysema and BWT scores in multivariate analysis (P = 1.70E-04, P = 0.006, respectively).
Conclusions: Emphysema and BWT are associated with airway remodeling in asthmatics. Our simple, semi-quantitative scoring system based on HRCT may be an easy-to-use method for estimating airflow limitation.
Keywords: Asthma; airway remodeling; computed tomography; emphysema; forced expiratory volume.
Copyright © 2023 The Korean Academy of Asthma, Allergy and Clinical Immunology • The Korean Academy of Pediatric Allergy and Respiratory Disease.