Purpose: Using a real-world database with matched genomic-transcriptomic molecular data, we sought to characterize the distinct molecular correlates underlying clinical differences between young-onset pancreatic cancer (YOPC; <50-yrs.) and average-onset pancreatic cancer (AOPC; ≥70-yrs.) patients.
Methods: We analyzed matched whole-transcriptome and DNA sequencing data from 2430 patient samples (YOPC, n=292; AOPC, n=2138) from the Caris Life Sciences database (Phoenix, AZ). Immune deconvolution was performed using the quanTIseq pipeline. Overall survival (OS) data was obtained from insurance claims (n=4928); Kaplan-Meier estimates were calculated for age-and molecularly-defined cohorts. Significance was determined as FDR-corrected P -values ( Q )<0.05.
Results: YOPC patients had higher proportions of mismatch repair-deficient (dMMR)/microsatellite instability-high (MSI-H), BRCA2 -mutant, and PALB2 -mutant tumors compared with AOPC patients, but fewer SMAD4-, RNF43-, CDKN2A- , and SF3B1- mutant tumors. Notably, YOPC patients demonstrated significantly lower incidence of KRAS mutations compared with AOPC patients (81.3% vs. 90.9%; Q =0.004). In the KRAS- wildtype subset (n=227), YOPC tumors demonstrated fewer TP53 mutations and were more likely driven by NRG1 and MET fusions, while BRAF fusions were exclusively observed in AOPC patients. Immune deconvolution revealed significant enrichment of natural killer (NK) cells, CD8 + T cells, monocytes, and M2 macrophages in YOPC patients relative to AOPC patients, which corresponded with lower rates of HLA-DPA1 homozygosity. There was an association with improved OS in YOPC patients compared with AOPC patients with KRAS -wildtype tumors (median 16.2 [YOPC- KRAS WT ] vs. 10.6 [AOPC- KRAS WT ] months; P =0.008) but not KRAS -mutant tumors ( P =0.084).
Conclusion: In this large, real-world multi-omic characterization of age-stratified molecular differences in PDAC, YOPC is associated with a distinct molecular landscape that has prognostic and therapeutic implications.