Objectives: The present study aimed to analyze the behaviors of three intraoral scanners (IOSs): evaluating the interdistance and axial inclination discrepancies in full-arch scans, predictable errors were searched.
Materials and methods: Six edentulous sample models with variable numbers of dental implants were used; reference data were obtained with a coordinate-measuring machine (CMM). Each IOS (i.e., Primescan, CS3600, and Trios3) performed 10 scans per model (180 total scans). The origin of each scan body was used as a reference point to measure interdistance lengths and axial inclinations. Precision and trueness of interdistance measurements and axial inclinations were evaluated to address error predictability. Bland-Altman analysis, followed by linear regression analysis and Friedman's test (plus Dunn's post hoc correction), was performed to evaluate the precision and trueness.
Results: Regarding interdistance, Primescan showed the best precision (mean ± SD: 0.047 ± 0.020 mm), while Trios3 underestimated the reference value more than the others (p < 0.001) and had the worst performance (mean ± SD: -0.079 ± 0.048 mm). Concerning the inclination angle, Primescan and Trios3 tended to overestimate angle values, while CS3600 underestimated them. Primescan had fewer inclination angle outliers, but it tended to add 0.4-0.6° to the measurements.
Conclusions: IOSs showed predictable errors: they tended to overestimate or underestimate linear measurements and axial inclinations of scan bodies, one added 0.4-0.6° to the angle inclination values. In particular, they showed heteroscedasticity, a behavior probably related to the software or the device itself.
Clinical significance: IOSs showed predictable errors that could affect clinical success. When performing a scan or choosing a scanner, clinicians should clearly know their behaviors.
Keywords: Accuracy; Digital dentistry; Full-arch scan; Implant scan body; Implant-supported prosthesis.
© 2023. The Author(s).