Skin cancer is one of the most lethal kinds of human illness. In the present state of the health care system, skin cancer identification is a time-consuming procedure and if it is not diagnosed initially then it can be threatening to human life. To attain a high prospect of complete recovery, early detection of skin cancer is crucial. In the last several years, the application of deep learning (DL) algorithms for the detection of skin cancer has grown in popularity. Based on a DL model, this work intended to build a multi-classification technique for diagnosing skin cancers such as melanoma (MEL), basal cell carcinoma (BCC), squamous cell carcinoma (SCC), and melanocytic nevi (MN). In this paper, we have proposed a novel model, a deep learning-based skin cancer classification network (DSCC_Net) that is based on a convolutional neural network (CNN), and evaluated it on three publicly available benchmark datasets (i.e., ISIC 2020, HAM10000, and DermIS). For the skin cancer diagnosis, the classification performance of the proposed DSCC_Net model is compared with six baseline deep networks, including ResNet-152, Vgg-16, Vgg-19, Inception-V3, EfficientNet-B0, and MobileNet. In addition, we used SMOTE Tomek to handle the minority classes issue that exists in this dataset. The proposed DSCC_Net obtained a 99.43% AUC, along with a 94.17%, accuracy, a recall of 93.76%, a precision of 94.28%, and an F1-score of 93.93% in categorizing the four distinct types of skin cancer diseases. The rates of accuracy for ResNet-152, Vgg-19, MobileNet, Vgg-16, EfficientNet-B0, and Inception-V3 are 89.32%, 91.68%, 92.51%, 91.12%, 89.46% and 91.82%, respectively. The results showed that our proposed DSCC_Net model performs better as compared to baseline models, thus offering significant support to dermatologists and health experts to diagnose skin cancer.
Keywords: CNN; deep learning; dermoscopic images; melanoma; skin cancer; transfer learning.