Minerals played a crucial role in the chemical evolution of small molecules into biopolymers. Yet, it is still not clear how the minerals are related to the formation and the evolution of protocells on early Earth. In this work, using the coacervate formed by quaternized dextran (Q-dextran) and single-stranded oligonucleotides (ss-oligo) as the protocell model, we systematically studied the phase separation of Q-dextran and ss-oligo on the muscovite surface. Serving as rigid and 2D polyelectrolytes, the muscovite surface can be treated by Q-dextran to become negatively charged, neutral, or positively charged. We observed that Q-dextran and ss-oligo form uniform coacervates on naked and neutral muscovite surfaces, while they form biphasic coacervates containing Q-dextran-rich phases and ss-oligo-rich phases on positively or negatively charged muscovite surfaces that were pretreated by Q-dextran. The evolution of the phases is caused by the redistribution of the components as the coacervate touches the surface. Our study indicates that the mineral surface could be a potential driving force for the formation of protocells with hierarchical structures and desirable functions on prebiotic Earth.