Realistic Protocol to Measure Entanglement at Finite Temperatures

Phys Rev Lett. 2023 Mar 31;130(13):136201. doi: 10.1103/PhysRevLett.130.136201.

Abstract

It is desirable to relate entanglement of many-body systems to measurable observables. In systems with a conserved charge, it was recently shown that the number entanglement entropy (NEE)-i.e., the entropy change due to an unselective subsystem charge measurement-is an entanglement monotone. Here we derive finite-temperature equilibrium relations between Rényi moments of the NEE, and multipoint charge correlations. These relations are exemplified in quantum dot systems where the desired charge correlations can be measured via a nearby quantum point contact. In quantum dots recently realizing the multichannel Kondo effect we show that the NEE has a nontrivial universal temperature dependence which is now accessible using the proposed methods.