Mitochondrial tRNAPhe from Saccharomyces cerevisiae isolated by two-dimensional gel electrophoresis was sequenced by fingerprinting uniformly labeled 32 P-tRNA as well as by 5'-end postlabeling techniques. Its sequence was found to be: pG-C-U-U-U-U-A-U-A-G-C-U-U-A-G-D-G-G-D-A-A-A-G-C-m22G-A-U-A-A-A-phi-U-G-A-A-m1G-A-phi-U-U-A-U-U-U-A-C-A-U-G-U-A-G-U-phi-C-G-A-U-U-C-U-C-A-U-U-A-A-G-G-G-C-A-C-C-A. The secondary structure we propose, in order to maximize base pairing in the phiC stem and to allow tertiary interaction between G15 and C46, excludes U50 from base pairing giving a bulge in the phiC stem. No conclusion can be drawn concerning the endosymbiotic theory of mitochondria evolution by comparing the primary structure of mt. tRNAPhe with other sequenced tRNAsPhe. This mt.tRNAPhe lacks some of the structural elements reported to be involved in the yeast cytoplasmic phenylalanyl-tRNA ligase recognition site and cannot be aminoacylated by purified yeast cytoplasmic phenylalanyl-tRNA ligase.