Purpose: To evaluate the classification performance of structured report features, radiomics, and machine learning (ML) models to differentiate between Coronavirus Disease 2019 (COVID-19) and other types of pneumonia using chest computed tomography (CT) scans.
Methods: Sixty-four COVID-19 subjects and 64 subjects with non-COVID-19 pneumonia were selected. The data was split into two independent cohorts: one for the structured report, radiomic feature selection and model building (n = 73), and another for model validation (n = 55). Physicians performed readings with and without machine learning support. The model's sensitivity and specificity were calculated, and inter-rater reliability was assessed using Cohen's Kappa agreement coefficient.
Results: Physicians performed with mean sensitivity and specificity of 83.4 and 64.3%, respectively. When assisted with machine learning, the mean sensitivity and specificity increased to 87.1 and 91.1%, respectively. In addition, machine learning improved the inter-rater reliability from moderate to substantial.
Conclusion: Integrating structured reports and radiomics promises assisted classification of COVID-19 in CT chest scans.
Keywords: Computed tomography; Machine learning; Pneumonia; Radiomics; Structured reports.
© Taiwanese Society of Biomedical Engineering 2023, Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.