Hybrid Metasurfaces for Perfect Transmission and Customized Manipulation of Sound Across Water-Air Interface

Adv Sci (Weinh). 2023 Jul;10(19):e2207181. doi: 10.1002/advs.202207181. Epub 2023 Apr 20.

Abstract

Extreme impedance mismatch causes sound insulation at water-air interfaces, limiting numerous cross-media applications such as ocean-air wireless acoustic communication. Although quarter-wave impedance transformers can improve transmission, they are not readily available for acoustics and are restricted by the fixed phase shift at full transmission. Here, this limitation is broken through impedance-matched hybrid metasurfaces assisted by topology optimization. Sound transmission enhancement and phase modulation across the water-air interface are achieved independently. Compared to the bare water-air interface, it is experimentally observed that the average transmitted amplitude through an impedance-matched metasurface at the peak frequency is enhanced by ≈25.9 dB, close to the limit of the perfect transmission 30 dB. And nearly 42 dB amplitude enhancement is measured by the hybrid metasurfaces with axial focusing function. Various customized vortex beams are experimentally realized to promote applications in ocean-air communication. The physical mechanisms of sound transmission enhancement for broadband and wide-angle incidences are revealed. The proposed concept has potential applications in efficient transmission and free communication across dissimilar media.

Keywords: acoustic metasurfaces; cross-media manipulation; impedance matching; topology optimization; water-air interface.