Envisaging antiferromagnetic spintronics pivots on two key criteria of high transition temperature and tuning of underlying magnetic order using straightforward application of magnetic field or electric current. Here, it is shown that NiSi metal can provide suitable new platform in this quest. First, the study unveils high-temperature antiferromagnetism in single-crystal NiSi with Néel temperature, TN ⩾ 700 K. Antiferromagnetic order in NiSi is accompanied by non-centrosymmetric magnetic character with small ferromagnetic component in the a-c plane. Second, it is found that NiSi manifests distinct magnetic and electronic hysteresis responses to field applications due to the disparity in two moment directions. While magnetic hysteresis is characterized by one-step switching between ferromagnetic states of uncompensated moment, electronic behavior is ascribed to metamagnetic switching phenomena between non-collinear spin configurations. Importantly, the switching behaviors persist to high temperature. The properties underscore the importance of NiSi in the pursuit of antiferromagnetic spintronics.
Keywords: antiferromagnetic metal; neutron scattering; spintronics; transition metal intermetallics.
© 2023 Wiley-VCH GmbH.