This work reports a metal-organic framework (MOF) with less-coordinated copper dimers, which displays excellent electrochemical CO2 reduction (eCO2 RR) performance with an advantageous current density of 0.9 A cm-2 and a high Faradaic efficiency of 71% to C2 products. In comparison with MOF with Cu monomers that are present as Cu1 O4 with a coordination number of 3.8 ± 0.2, Cu dimers exist as O3 Cu1 ···Cu2 O2 with a coordination number of 2.8 ± 0.1. In situ characterizations together with theoretical calculations reveal that two *CO intermediates are stably adsorbed on each site of less-coordinated Cu dimers, which favors later dimerization via a key intermediate of *CH2 CHO. The highly unsaturated dual-atomic Cu provides large-quantity and high-quality actives sites for carbon-carbon coupling, achieving the optimal trade-off between activity and selectivity of eCO2 RR to C2 products.
Keywords: C 2 products; Cu dimers; density functional theory calculations; electrochemical CO 2 reduction; in situ characterizations.
© 2023 Wiley-VCH GmbH.