The purpose of resource scheduling is to deal with all kinds of unexpected events that may occur in life, such as fire, traffic jam, earthquake and other emergencies, and the scheduling algorithm is one of the key factors affecting the intelligent scheduling system. In the traditional resource scheduling system, because of the slow decision-making, it is difficult to meet the needs of the actual situation, especially in the face of emergencies, the traditional resource scheduling methods have great disadvantages. In order to solve the above problems, this paper takes emergency resource scheduling, a prominent scheduling problem, as an example. Based on Vague set theory and adaptive grid particle swarm optimization algorithm, a multi-objective emergency resource scheduling model is constructed under different conditions. This model can not only integrate the advantages of Vague set theory in dealing with uncertain problems, but also retain the advantages of adaptive grid particle swarm optimization that can solve multi-objective optimization problems and can quickly converge. The research results show that compared with the traditional resource scheduling optimization algorithm, the emergency resource scheduling model has higher resolution accuracy, more reasonable resource allocation, higher efficiency and faster speed in dealing with emergency events than the traditional resource scheduling model. Compared with the conventional fuzzy theory emergency resource scheduling model, its handling speed has increased by more than 3.82 times.
Keywords: Model; Multi objective; Particle swarm optimization algorithm; Resource scheduling; Vague set theory.
© The Author(s), under exclusive licence to Springer Nature B.V. 2023, Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.