Circulating Human Metabolites Resulting from TOTUM-070 Absorption (a Plant-Based, Polyphenol-Rich Ingredient) Improve Lipid Metabolism in Human Hepatocytes: Lessons from an Original Ex Vivo Clinical Trial

Nutrients. 2023 Apr 14;15(8):1903. doi: 10.3390/nu15081903.

Abstract

TOTUM-070 is a patented polyphenol-rich blend of five different plant extracts showing separately a latent effect on lipid metabolism and potential synergistic properties. In this study, we investigated the health benefit of such a formula. Using a preclinical model of high fat diet, TOTUM-070 (3 g/kg of body weight) limited the HFD-induced hyperlipemia with a reduction in triglyceride (-32% after 6 weeks; -20.3% after 12 weeks) and non-HDL cholesterol levels (-21% after 6 weeks; -38.4% after 12 weeks). To further investigate such a benefit and its underlying mechanisms in humans, we designed an ex vivo clinical approach to collect the circulating bioactives resulting from TOTUM-070 ingestion and to determine their biological activities on human hepatocytes. Human serum was obtained from healthy subjects before and after intake of TOTUM-070 (4995 mg). The presence of circulating metabolites was assessed by UPLC-MS/MS. Serum containing metabolites was further incubated with hepatocytes cultured in a lipotoxic environment (palmitate, 250 µM). RNA sequencing analyses show that lipid metabolism was one of the most impacted processes. Using histologic, proteomic, and enzymatic assays, the effects of human TOTUM-070 bioactives on hepatocyte metabolism were characterized by (1) the inhibition of lipid storage, including both (2) triglycerides (-41%, p < 0.001) and (3) cholesterol (-50%, p < 0.001) intracellular content, (4) a reduced de novo cholesterol synthesis (HMG-CoA reductase activity -44%, p < 0.001), and (5) a lowered fatty acid synthase protein level (p < 0.001). Altogether, these data support the beneficial impact of TOTUM-070 on lipid metabolism and provide new biochemical insights in human mechanisms occurring in liver cells.

Keywords: cholesterol; clinical trial; ex vivo; hepatocytes; lipid metabolism.

MeSH terms

  • Cholesterol
  • Chromatography, Liquid
  • Diet, High-Fat
  • Hepatocytes
  • Humans
  • Lipid Metabolism*
  • Liver / metabolism
  • Polyphenols* / metabolism
  • Polyphenols* / pharmacology
  • Proteomics
  • Tandem Mass Spectrometry
  • Triglycerides

Substances

  • Polyphenols
  • Cholesterol
  • Triglycerides