Adoptive Transfer of Photosensitizer-Loaded Cytotoxic T Cells for Combinational Photodynamic Therapy and Cancer Immuno-Therapy

Pharmaceutics. 2023 Apr 20;15(4):1295. doi: 10.3390/pharmaceutics15041295.

Abstract

Adoptive cell transfer (ACT) has shown remarkable therapeutic efficacy against blood cancers such as leukemia and lymphomas, but its effect is still limited due to the lack of well-defined antigens expressed by aberrant cells within tumors, the insufficient trafficking of administered T cells to the tumor sites, as well as immunosuppression induced by the tumor microenvironment (TME). In this study, we propose the adoptive transfer of photosensitizer (PS)-loaded cytotoxic T cells for a combinational photodynamic and cancer immunotherapy. Temoporfin (Foscan®), a clinically applicable porphyrin derivative, was loaded into OT-1 cells (PS-OT-1 cells). The PS-OT-1 cells efficiently produced a large amount of reactive oxygen species (ROS) under visible light irradiation in a culture; importantly, the combinational photodynamic therapy (PDT) and ACT with PS-OT-1 cells induced significant cytotoxicity compared to ACT alone with unloaded OT-1 cells. In murine lymphoma models, intravenously injected PS-OT-1 cells significantly inhibited tumor growth compared to unloaded OT-1 cells when the tumor tissues were locally irradiated with visible light. Collectively, this study suggests that combinational PDT and ACT mediated by PS-OT-1 cells provides a new approach for effective cancer immunotherapy.

Keywords: adoptive T cell therapy; cancer immunotherapy; cell-mediated drug delivery; combination therapy; photodynamic therapy.