Synchronous Modulation of Energy Level Gradient and Defects for High-Efficiency HTL-Free Carbon-Based All-Inorganic Perovskite Solar Cells

Small Methods. 2023 Jul;7(7):e2300192. doi: 10.1002/smtd.202300192. Epub 2023 Apr 28.

Abstract

In order to improve the thermal stability of perovskite solar cells (PSCs) and reduce production costs, hole transport layer (HTL)-free carbon-based CsPbI3 PSCs (C-PSCs) have attracted the attention of researchers. However, the power conversion efficiency (PCE) of HTL-free CsPbI3 C-PSCs is still lower than that of PSCs with HTL/ metal electrodes. This is because the direct contact between the carbon electrode and the perovskite layer has a higher requirement on the crystal quality of perovskite layer and matched energy level at perovskite/carbon interface. Herein, the acyl chloride group and its derivative trichloroacetyl chloride are used to passivate CsPbI3 C-PSCs for the first time. The results show that the carbonyl group of trichloroacetyl chloride can effectively passivate the uncoordinated Pb2+ ions in perovskite. At the same time, leaving group Cl- ions can increase the grain size of perovskite and improve the crystallization quality of perovskite layer. In addition, the trichloroacetyl chloride tends to generate cesium chloride acetate, which acts as an electron blocking layer, reduces charge recombination, promotes gradient energy level arrangement, and effectively improves the separation and extraction ability of carriers. The PCE of CsPbI3 HTL-free C-PSCs is successfully increased from 13.40% to 14.82%.

Keywords: CsPbI3; acyl chloride group; carbon electrodes; interfacial passivation; perovskite solar cells.