A hyper-quiescent chromatin state formed during aging is reversed by regeneration

Mol Cell. 2023 May 18;83(10):1659-1676.e11. doi: 10.1016/j.molcel.2023.04.005. Epub 2023 Apr 27.

Abstract

Epigenetic alterations are a key hallmark of aging but have been limitedly explored in tissues. Here, using naturally aged murine liver as a model and extending to other quiescent tissues, we find that aging is driven by temporal chromatin alterations that promote a refractory cellular state and compromise cellular identity. Using an integrated multi-omics approach and the first direct visualization of aged chromatin, we find that globally, old cells show H3K27me3-driven broad heterochromatinization and transcriptional suppression. At the local level, site-specific loss of H3K27me3 over promoters of genes encoding developmental transcription factors leads to expression of otherwise non-hepatocyte markers. Interestingly, liver regeneration reverses H3K27me3 patterns and rejuvenates multiple molecular and physiological aspects of the aged liver.

Keywords: aging; chromatin; epigenetics; liver; regeneration.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, N.I.H., Intramural
  • Research Support, N.I.H., Extramural

MeSH terms

  • Aging / genetics
  • Animals
  • Chromatin* / genetics
  • Epigenesis, Genetic
  • Histones* / genetics
  • Histones* / metabolism
  • Mice
  • Transcription Factors / metabolism

Substances

  • Chromatin
  • Histones
  • Transcription Factors